You are hereAmanda Fencl's blog

Amanda Fencl's blog

  • strict warning: Non-static method view::load() should not be called statically in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/views.module on line 1118.
  • strict warning: Declaration of views_handler_field::query() should be compatible with views_handler::query($group_by = false) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_field.inc on line 0.
  • strict warning: Declaration of views_handler_argument::options_validate() should be compatible with views_handler::options_validate($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_argument.inc on line 0.
  • strict warning: Declaration of views_handler_argument::query() should be compatible with views_handler::query($group_by = false) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_argument.inc on line 0.
  • strict warning: Declaration of views_handler_sort::options_validate() should be compatible with views_handler::options_validate($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_sort.inc on line 0.
  • strict warning: Declaration of views_handler_sort::options_submit() should be compatible with views_handler::options_submit($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_sort.inc on line 0.
  • strict warning: Declaration of views_handler_sort::query() should be compatible with views_handler::query($group_by = false) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_sort.inc on line 0.
  • strict warning: Declaration of views_handler_filter::options_validate() should be compatible with views_handler::options_validate($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_filter.inc on line 0.
  • strict warning: Declaration of views_handler_filter::query() should be compatible with views_handler::query($group_by = false) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_filter.inc on line 0.
  • strict warning: Declaration of views_handler_area::query() should be compatible with views_handler::query($group_by = false) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_area.inc on line 0.
  • strict warning: Declaration of views_handler_area_text::options_submit() should be compatible with views_handler::options_submit($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/handlers/views_handler_area_text.inc on line 0.
  • strict warning: Declaration of views_plugin_query::options_submit() should be compatible with views_plugin::options_submit($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/plugins/views_plugin_query.inc on line 0.
  • strict warning: Declaration of views_plugin_argument_validate::options_submit() should be compatible with views_plugin::options_submit($form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/plugins/views_plugin_argument_validate.inc on line 0.
  • strict warning: Declaration of views_plugin_row::options_validate() should be compatible with views_plugin::options_validate(&$form, &$form_state) in /opt/drupal6/environmentalpolicy.ucdavis.edu/modules/views/plugins/views_plugin_row.inc on line 0.

Small, self-sufficient water systems continue to battle a hidden drought

By Amanda Fencl - Posted on 07 August 2017

[cross posted from the CA Water Blog

By Amanda Fencl, Meghan Klasic

California’s drought appears over, at least above ground. As of April 2017, reservoirs were around 2 million acre feet above normal with record breaking snowpack . This is great news for the 75% of Californians that get their drinking water from large, urban surface water suppliers. Groundwater, however, takes longer to recharge and replenish. What does this mean for the more than 2,000 small community water systems and hundreds of thousands of private well-reliant households that rely on groundwater?

Small water systems are defined in our study as those have fewer than 3,000 connections, i.e. those that are not required to file an Urban Water Management Plan (UWMP). A large proportion of small systems serve low-income communities in rural areas. These communities are burdened with high unemployment, crime, and pollution, and their water systems typically have lower technical, managerial, and financial capacity for operations. Of the approximately 13 million people living within disadvantaged communities (DAC), nearly 2 million get their drinking water from a small system. These low-income communities are disproportionately exposed to contaminated drinking water, usually from small systems that struggle to comply with regulations.

These same small systems were hit hard by the drought, and in many cases are the least prepared. The state knew this headed into the drought: “California also has small, rural water companies or districts with virtually no capacity to respond to drought or other emergencies [… a portion of the small systems]  in the state face running dry in the second or third year of a drought” (p.56, emphasis added). In contrast, urban drinking water suppliers (larger systems) are required to have a water shortage contingency plans (Shortage Plan) since the passage of the Urban Water Management Act in 1983. Aside from lower reservoir levels and toxic algal blooms, the majority of large surface water suppliers weathered the recent drought (2012-2016) without supply disruptions or other negative impacts to their customers. A 2015 survey distributed by the UC Davis Policy Institute shows that more large systems (89%) have written drought contingency plans (Plan) than small systems (63%) (manuscript in prep). When asked whether their Plan was sufficient to mitigate the drought’s impacts on water supply, 22% of large and 28% of small system respondents said it was not sufficient or only somewhat sufficient, which begs the question of how can these be improved before the next drought? 

Syndicate content